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SUMMARY

Calculations of steady and unsteady, transonic, turbulent channel flows

with a time-accurate, lower-upper (L-U) factorization scheme are presented.

The L-U factorization scheme is formally second-order accurate in time and

space, and it is an extension of the steady state-flow solver (RPLUS) used

extensively to solve compressible flows. A time-discretization method and the

implementation of a consistent boundary condition specific to the L-U factori-

zation scheme are also presented. The turbulence is described by the Baldwin-

Lomax algebraic turbulence model. The present L-U scheme yields stable

numerical results with the use of much smaller artificial dissipations than

those used in the previous steady-flow solver for steady and unsteady channel

flows. The capability to solve time-dependent flows is shown by solving very

weakly excited and strongly excited, forced oscillatory, channel flows.

INTRODUCTION

In the lower-upper (L-U) factorization scheme (ref. i), the governing

flow equations are factored into forward (lower) and backward (upper) differ-

ence operators, and the factored flow equations are solved by an implicit

finite volume method. The L-U scheme has a few advantages over other numeri-

cal methods for solving compressible flows. In the L-U scheme, only two

factored equations need to be solved for any number of physical dimensions,

whereas in the Alternating-Direction-Implicit (ADI) schemes, three factored

equations need to be solved for three-dimensional flows. Thus, the number of

numerical operations and the required memory size are smaller in the L-U

schemes. Due to the use of an implicit time-stepping, which is usually free

of the Courant-Friedrichs-Lewy (CFL) stability constraint condition, a

relatively large time-step can be used in the L-U schemes. Even though the

method is implicit, the costly matrix inversion of a large discrete system of

equations is minimized, as shown in the following section. Due to the

efficiency of the L-U scheme to solve large problems, the method has been

rapidly extended to solve chemically reacting flows (ref. 2) and hypersonic

flows (ref. 3). The method has also been extended to solve incompressible

flows (ref. 4).

Many fluid flows exhibit natural oscillations which may or may not be

desirable from the design point of view. In certain cases, fluid flows may go

through forced oscillations to achieve certain objectives. The start-up and

shut-down of a fluid machinery also impart unsteadiness to the fluid flow, and

critical fluid loading may occur during such processes. Therefore, unsteady-

flow solvers are more desirable than steady-flow solvers. Furthermore, steady
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flows can also be solved by using unsteady-flow solvers. In this report, the

L-U scheme is extended to solve transient flows by incorporating the general-

ized time-differencing scheme of Beam and Warming (refs. 5 and 6). To

correctly resolve the transient flow phenomenon at and near the boundary, the

boundary conditions are implemented in predictor and corrector steps in a

mathematically consistent form with the time-accurate L-U factorization

scheme.

SYMBOLS

A

E,F

E v, F v

H

I

k

(Q,m)

P

Pe

Pt

Q

R
p

uj

x 3

0

(j

Jacobian matrix for _, A = {_/SQ}

Jacobian matrix for F, B = {SF/SQ}

convective transport vector

diffusive transport vector

height of channel throat, (H = 0.044 m)

identity matrix

effective thermal conductivity

index for mesh

pressure

pressure at the exit boundary

total pressure

vector of flow variables, Q = {#,#u,#v,pe} T

pressure ratio, Rp = pe/pt

velocity component, uj J {u,v}

Cartesian coordinates, xj = {x,y}

intermediate solution

phase angle

molecular viscosity

effective viscosity

turbulent viscosity

curvilinear coordinates, _j = {{,_,_}

order of magnitude

Superscripts:

n iteration count

^ vector or matrix defined on curvilinear coordinates

Subscripts:

i,j index for spatial coordinates, i - {1,2,3} and J = {1,2,3}



L-U FACTORIZATION SCHEME

The time-dependent, compressible, turbulent flow equation is given as

_Q _E _F _Ev _Fv
= - _ + +

where

(i)

Q = {p, pu, pv, #e} T

E = {#u, #u 2 + p, puv, u(_e + p)}T

F = {pv, _uv, pv 2 + p, v(pe + p)}T

E v = {0, Yxx, Txy, UTxx + VTxy -qx }T

Fv= %x,%y, +v%y-q/

In the above equations, T± = 2_eSij + _kk_lj is the stress tensor,

_ = (_ul/Sx _ + 8uj/_xl) i_ the strain rate tensor, _e = _ + _t is the effec-

tive viscosity, _ = -2/3_e is the second viscosity for compressibility,

ql = -kOT/_xl is the heat flux due to temperature gradient, and the sub-

scripts i and j denote each coordinate direction. For flows with arbi-

trary geometries, it is more convenient to solve the flow equation defined on

curvilinear coordinates with the use of body-fitted grids than to solve the

flow equation defined on cartesian coordinates. The coordinate transformed

flow equation can be written as

8_ 8_ 8_ 8_v 8_v
= - - + + (2)

where Q = Q/J, _. = (_x E + _yF + _tQ)/J, F = (_×E + _yF + _tQ)/J, _'v = (_xEv + _yFv)/J'

Fv = (_xEv + _-Fv)/J' J is the grid transformation Jacobian, and _ , _ , _ ,
x _ x

and _y are grid transformation metrics. A general form time-discret_zation

for _Q/_T is given (ref. 5) as

A6 n el OA6 n 1 86 n e2 A6 n-1
•= 4- 4- __

_i_÷0 i- 2

(3)

where the last term represents the truncation error. For the implicit, three-

point, backward differencing case used in the present study, 81 = i, 8 2 = 1/2,

the temporal truncation error is 0(_T) 3, _n = _n+Z _ _n, and equation (3) is

an alternative form of
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Solving equation (2) for

into equation (3) yields

_Qn/_T and _Q"/_T and substituting the results

A_n + (4)

where

deriving the residual function (R), A_ and AF 3 are approximated asIn

_v v - _ and v .= Fv - Fv . In the ADI schemes (refs. 5 and 6)

using the same time-discretization method (ref. 5), the time-lag approximation

is used only for the cross-derivatives of the viscous transport terms. In the

present case, all the viscous transport terms are lagged by one time step to

facilitate the L-U factorization. The errors involved in these approximations

are 0(_T) 2, and hence the formal accuracy of the scheme remains intact

(ref. 5). The convective transport terms in equation (4) are nonlinear

functions of the flow variables. To solve equation (4) by a numerical method,

the nonlinear terms are linearized as

I

A_ n _- AA(_n + O(AT) 2

A_,n _- §A(_n + O(A'/-)2 !
(5)

where A = _n/_ 6 and _ = _n/_ are the Jacobian matrices. Substituting

equation (5) into equation (4) yields

+ f.; + a,lj
(6)

where the superscript n has been deleted for notational convenience. For

the L-U factorization of equation (6), the Jacobian matrices are decomposed as



(7)

where _+ = i/2(_ + rAI ), _" = I/2(A - rAI ), B+ = I/2(B + rBI),

B-= I/2(B- rBI), rA > max(IVBl ) and rB > max(IVBl), and VA and VB are

the eigen values of the Jacobian matrices A and B, respectively. The eigen

values of A + and B÷ matrices are positive values, and the eigen values of

_- and B- matrices are negative values. Inserting equation (7) into

equation (6) yields

i++-T-__ +_ ÷__As_+'--_-_A_--_
(8)

where _(A+ + A-)I_ has been approximated as 8-i÷IB{ + B+i-I8{, B-i+IB{
= A+(_,m) - A+(_ - l,m) is the backward difference operator and _+A'I_

= A-(_ + l,m) - A-(t,m) is the forward difference operator. The same approxi-

mation is also applied to _(B÷ + B-)/_. After some rearrangement, equa-

tion (8) becomes

I +
81AT (1%*(_,m) - _-((,m) - _+((,m) + _-(_ + l,m)

i+_
l

+ B+(I_,m) - B-(#,m) - B+(I_,m - i) + B-(_,m + I))IA(_ =

J

or

[II.+ 82 (rA + rB)I- _[i_ (# -l,m)+ 1_+(#,m- i)_1

1 + __ (r A + rB) I + )
1 + (_2 i'_22 l,m) + B (_,m + 1 AQ

[ I F- 1 + (ra + R +

÷_ r_, L__ J (_-
l,m) + B+({,m - i)]

X [A-(, + l,m) + B-(,,m + 1}JA(_

(9)



where _÷ _ _- z rAI and B÷ - B- = rBI have been madeuse of in deriving
equation (9). The last term in equation (9) represents the factorization
error. The factorization error shares the sameorder of accuracy as those of
various ADI factorization schemes (refs. 5 and 6). The L-U factored flow
equation (eq. (9)) is solved in two steps:

l + 1 +_2 (rA + rB) I - f _2

81A_ ]
= 1 + -- (rA + rB)

1 +82

(i0)

and

[ eIA_
1 +

1 +02__ (r A + rB) I + 1- + _2 [_ (_ + 1,m) + B-(_,m + 1) /_Q = _S

(ii)

where AS is the vector of intermediate solution. In the L-U factorization

scheme, only two factored operators need to be solved for any number of

physical dimensions; whereas in ADI schemes, three factored operators need to

be solved for three-dimensional flows. Thus, less memory and computer time

are required in the L-U schemes than in the ADI schemes. For flow equations

without source terms (e.g., without chemical reactions), equations (i0)

and (ii) are solved by forward and backward sweeps only; and the costly matrix

inversion of a large discrete system of equations is unnecessary.

CONSISTENT BOUNDARY CONDITION

Usually, the boundary conditions in flow problems are given in terms of

velocity, pressure and temperature; whereas the flow variables solved for in

the present L-U scheme are the density, velocity, and internal energy. Thus,

the boundary conditions given in terms of velocity, pressure, and temperature

need to be recast in terms of density, velocity, and internal energy. Also

note that the boundary conditions to be supplied in the lower sweep (see

eq. (i0)) need to be prescribed in terms of the intermediate solution on the

boundary grid points. To correctly resolve time-dependent boundary condi-

tions, the boundary conditions are implemented in predictor and corrector

steps in the present L-U scheme.

Predictor Step for Lower-Sweep

The grid layout near the lower-sweep boundary is shown in figure I. The

intermediate solution on the west boundary or on the south boundary is

obtained by using equation (ii) and the three incremental solutions at the

grid points AQ(|,m), AQ(_ + l,m), and AQ(_,m + i) shown in figure l(c). The



incremental solutions at the grid points (_ + l,m) and (_,m + i) are predicted
as

hQ(_ + l,m) = _n(_ + l,m) - _n-l(_ + l,m)

hQ(Q + l,m) --_n(_ + l,m) -6n-1(_ + l,m)

(12)

The incremental solution at the grid point (_,m), or the grid point b in

figure l(d), is obtained from the boundary conditions and the flow variables

of the most current time level. For example, by using the dependent

variables, the temperature can be expanded as

8T 8T
8T 8T A(pU) +--A(pv) +--A(pe)

w = T° +_hp0p + )8(p_-- 8(pv) 8(fie)
(13)

For fixed temperature on the wall, the above equation can be rewritten as

_T _)T _T _)TEp' (_-_' (_p-_' 8(pe)
lap, A(pu), A(pv), A(pe)] T = T ° - T n (14)

where T ° is the prescribed temperature which may or may not depend on time.

For prescribed temperature gradient on the boundary, for the second-order one-

sided difference approximation case, equation (13) can be rewritten as

8T 1 o

0---n = _ (3Tb " 4Tc + Ta) = T

or

3loT, 8T OT 8T

2[_ _(pu)' 8(pv)' _(pe)
} [/%p, /%(pu), /%(pv), /%(pe)]:
b

418T OT 8T

" O(pu)' O<pv)

I8T / A(pu),/%(pv),A(pe)]:
' 8(pe)jc

[ I

liOT OT _T _T / [/%P' /%(pu), /%(pv), /%(pe)]:+ O<pv)'8(pe) a.

= TW Tb --2Tc - ] Ta

(15)

where the first, second, and third terms of equation (15) are evaluated at

grid points b, c, and a, respectively (see fig. l(d)). Derivation of the

discrete boundary conditions for velocity and pressure follows the same



procedure as that for temperature. The discrete boundary condition can be
written as

(16)

where _ = _(T,u,v,p)/_(p,pu,pv,pe) is the Jacobian matrix.

solution at the boundary grid point, _Qb' is obtained as

_(_b " _-I(_ _ _aA_ a + _c_c) -- _¢_(e ,m)

The incremental

(17)

Substituting equations (12) and 17) into equation (ii) yields the boundary

condition to be used in equation (I0).

Predictor Step for Upper-Sweep and Corrector Step

For the upper sweep, the boundary condition on the east and north

boundaries are obtained by applying equation (17) for each grid point on the

boundary. For each time level, after lower and upper sweeps, the flow vari-

ables on the boundary are corrected by using equation (17).

NUMERICAL RESULTS AND DISCUSSION

The geometry of the two-dimensional channel flows considered in the

present study is shown in figure 2. Measured data for steady flow cases can

be found in references 7 to 9. For R (= p /pt ) = 0.82, a mild normal shock
appears in the downstream region of th_ throat. The flow field remains almost

steady, and flow separation is not observed (ref. 7). For R = 0.72, a

stronger normal shock than that for R = 0.82 appears in thePfarther down-

stream region of the throat, and shock[induced separation occurs on the bottom

and top walls (ref. 7). The flow for R = 0.72 exhibits a mild self-excited

oscillatory motion. In the forced oscillation case, a triangular rotor,

located at x=13H downstream of the throat, is turned at I00 revolutions per

second. Thus, the flow is subjected to a variable exit pressure with the

frequency of 300 Hz (refs. 7 and 8). The root-mean-square value of the first

harmonic oscillatory pressure at x = 8.65H is approximately 0.57 percent of

the local static pressure (refs. 7 and 8). However, the exact time-dependent

exit pressure is not given in references 7 and 8. Hence, in the present

study, the transient flow calculations are made by using harmonically varying

exit pressure, as is done in references 9 and I0.

In numerical calculations, for both steady and unsteady flows, the inlet

boundary is located at 4H upstream of the nozzle throat, and the exit boundary

is located at 12H downstream of the throat. The entire flow domain is

discretized by i13x81 grid points with the concentration of grid points in the

near-wall and throat regions. The mesh for the contoured nozzle is shown in
÷

figure 3. The first grid point from the wall is located at y m 1 (i.e.,

y/H = 0.651xi0 -3 at the throat). The grid size in the transverse direction is

increased by a factor of approximately 1.2. The mean velocities, static

pressure, and temperature are prescribed at the inlet boundary. The static

8



pressure (time-dependent static pressure for unsteady flow) is prescribed at
the exit boundary, and the velocities and the temperature are obtained by
extrapolation. On the solid walls, no slip boundary condition is used for
velocities, and vanishing gradient boundary condition is used for the pressure
and temperature. The discrete system of equations is obtained by central
differencing, and the numerical instability is suppressed by incorporating an
artificial dissipation (ref. ii). The second- and fourth-order artificial
dissipation coefficients used are 1/16 and 1/1280, respectively. These arti-
ficial dissipation coefficients are muchsmaller than those used in the L-U
factorization schemefor steady flows (refs. 2 and 3) and those used in the
ADI schemes (refs. 6 and ii). For steady flows, the present method yields
stable numerical results for the CFL number up to approximately 2000. The

maximum CFL number that can be used to obtain stable numerical results is

approximately one order of magnitude greater than those used in other numeri-

cal methods (refs. 1 and 6). The unsteady flows are solved using the CFL

number of 20. The capability to obtain stable numerical results by using a

very small artificial dissipation and a large time-step is attributed to the

time-accurate L-U factorization scheme. For steady flows, the converged

solutions are obtained in approximately 2000 time steps.

The turbulence is described by the Baldwin-Lomax turbulence model

(ref. 12). It is known that the algebraic turbulence model may not yield

accurate numerical results for largely separated flows (ref. 13). The present

numerical calculations also reproduce the generally known shortcomings of the

turbulence model. These shortcomings are discussed in more detail later in

this section.

The calculated pressure and Mach number contours for R _ 0.82 are shown

in figure 4, where the incremental pressure and the incremental Mach number

between the contour lines are constant. In figure 5, the pressure distribu-

tions on the bottom and top walls are compared with the measured data of

reference 7 and the numerical results of reference 9. The present numerical

results are in good agreement with the measured data in most of the flow

region except near x _ 4.5H on the top wall. The lower pressure distribution

in this region is caused by a small recirculation bubble located on the top

wall at x _ 4.5H. The recirculation bubble was not observed in the experi-

ment (ref. 7). In the numerical calculation, the reversed flow region is

caused by the algebraic turbulence model, which cannot accurately predict the

rapidly growing turbulence intensity along the curved surface. In

reference 9, the turbulence was described by the k-W turbulence model, which

did not show the reversed flow region.

The calculated mean velocity profiles are shown in figure 6. The

calculated mean velocity profile at x = 1.73H is in good agreement with the

measured data and the other numerical result (ref. 9). Near and in the

downstream region of the spurious separation bubble, the present numerical

results compare less favorably with the measured data than do the other

numerical results.

The calculated pressure and Mach number contours for R = 0.72 are shown
p

in figure 7. Again, the incremental pressure and the incremental Mach number

between the contour lines are constant. It can be seen in the figure that the

shock is moved further in the downstream direction and that the Mach number

decreases more rapidly across the shock than the previous case (Rp = 0.82) due



to the stronger shock. The calculated pressure distributions on the bottom
and top walls are shown in figure 8. The calculated flow field contains a
large shock-separated recirculation zone on the top wall and a small shock-
separated recirculation zone on the bottom wall. The relatively large
discrepancy between the calculated and the measuredwall pressure distribu-
tions is caused by the large internal blockage formed by the recirculation
bubbles. In reference i0, the exit boundary was located at 8.64H downstream
of the nozzle throat. In their calculation using the original k-W turbu-
lence model, the reversed flow region extended beyond the exit boundary and
converged solution was not obtained. The converged solution was obtained by
using a different turbulence model constant in reference i0. The use of a
different turbulence model constant effectively reduces the size of the
recirculation bubble and yields numerical results which are in good agreement
with the measureddata (ref. i0). The sameturbulence model that was used in
reference i0 has also been used in reference 9. In the present calculation
using the Baldwin-Lomax turbulence model, a converged solution cannot be
obtained if the exit boundary is located at 8.64H downstreamof the nozzle,
since the reversed flow region extends beyond the exit boundary. The con-
verged solution is obtained by locating the exit boundary at 12Hdownstreamof
the nozzle throat instead of optimizing the Baldwin-Lomax turbulence model.

The calculated meanvelocity profiles for R = 0.72 are shown in fig-
ure 9. The calculated meanvelocity profiles sho_ a large reversed flow
region near the top wall boundary. Near and downstreamof the separation
region, the present numerical results compare less favorably with the measured
data than do the numerical results of reference 9. The present numerical
results, as well as those of reference i0, strongly demonstrate that an
accurate numerical result can hardly be obtained without the use of a good
turbulence model. However, the present study is limited to the development
and verification of the time-accurate L-U factorization scheme, and optimiza-
tion of the algebraic turbulence model is not attempted.

The evolution of flow variables in time for mildly and strongly excited
unsteady channel flows are shownin figures i0 and ii, respectively. The exit
pressure is prescribed as

P. = Po + Pc sin(2_ft)

where t represents time. For the mildly excited case, P = 0.82,
O

Pc = 0.0082, and f = 300; and for the strongly excited case, Po = 0.77,

Pc z 0.05, and f = 300. In each case, the numerical results show that the

fluid motion consists of the low-frequency natural oscillation (which is

inherent to each flow system) and the forced oscillation. The oscillatory

motion of the separation bubble for the strongly excited case is shown in

figure 12. As the exit pressure is increased, the separation bubble becomes

bigger and moves toward the throat; and as the exit pressure is decreased, the

bubble becomes smaller and moves toward the exit boundary. Thus, the numeri-

cal method reproduces the experimentally observed trend of the fluid motion.

i0



SUMMARYOF RESULTS

Numerical calculations of steady and forced oscillatory transonic
turbulent flows in a two-dimensional channel are madeby using a time-accurate
L-U factorization scheme. The calculated velocity profiles and the pressure
distributions on the walls for the steady flows are in good agreement with the
measureddata, considering the limited predictive capability of the algebraic
turbulence model for complex turbulent flows. The present numerical results
show a large shock-separated reversed flow region for the R = 0.72 case.

The large separation bubble is caused by the use of the algebraic turbulence

model which cannot adequately describe the turbulence field subjected to the

streamline curvature and the normal shock. It is interesting to note that the

k-W turbulence model (ref. i0) also yields a largely separated flow region for

the steady flow for R = 0.72. The objective of the present study is limited

to the development andPthe verification of the time-accurate lower-upper

factorization scheme, and optimization of the turbulence model is not

attempted.

The time-accurate lower-upper factorization scheme shows a few important

numerical aspects. A large amount of artificial dissipation can impair the

numerical results and hence alternative artificial dissipation models have

also been proposed (refs. 14 and 15). However, the present numerical method

yields stable numerical results by using a much smaller artificial dissipation

than other numerical methods (refs. 2, 3, 6, and ii). The method also yields

a stable numerical result with the use of a large CFL number. The maximum CFL

number that can be used to obtain stable numerical results for the present

method is at least one order of magnitude greater than those for the other

numerical methods (refs. i, 6, and Ii). Thus, the method is competitive with

steady flow solvers for steady flows. For time-dependent flows, the time-step

size is limited only by the physical phenomenon of the fluid flow to be

considered.
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Figure 1. -- Mesh near the boundary.

,,--Tnp

L_ Throat Exciter, r
El reference

= 572 - I position

---305 _ _ £.,35

Figure 2. -- Transonic flow channel. (All dimensions are
in ram.)

x/H = -2.7
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Figure 4. -- Contour plot of pressure and Mach number for pe/pt = 0.82.
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Figure 5. -- Pressure distributions for pelpt = 0.82.
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Figure 8. -- Pressure distributions for Pe/Pt = 0.72.
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